A BRAIDLIKE PRESENTATION OF Sp(n, p)

BY

BRONISLAW WAJNRYB*

Department of Mathematics
Technion—Israel Institute of Technology, Haifa 32000, Israel

ABSTRACT

For n even and p an odd prime a symplectic group $\operatorname{Sp}(n,p)$ is a quotient of the Artin braid group B_{n+1} . If s_1,\ldots,s_n are standard generators of B_{n+1} then the kernel of the corresponding epimorphism is the normal closure of just four elements: $s_1^p, (s_1s_2)^6, s_1^{(p+1)/2}s_2^4s_1^{(p-1)/2}s_2^{-2}s_1^{-1}s_2^2$ and $(s_1s_2s_3)^4A^{-1}s_1^{-2}A$, where $A=s_2s_3^{-1}s_2^{(p-1)/2}s_4s_3^2s_4$, all of them lying in the subgroup B_5 . $\operatorname{Sp}(n,p)$ acts on a vector space and the image of the subgroup B_n of B_{n+1} in $\operatorname{Sp}(n,p)$, denoted $\operatorname{Sp}(n-1,p)$, is a stabilizer of one vector. A sequence of inclusions $\cdots B_{k+1} \cdot B_k \cdots$ induces a sequence of inclusions $\cdots \operatorname{Sp}(k,p) \cdot \operatorname{Sp}(k-1,p) \cdots$, which can be used to study some finite-valued invariants of knots and links in the 3-sphere via the Markov theorem.

Introduction

In [A] Joachim Assion gave a very simple presentation of the symplectic group Sp(n,3) as a quotient of the Artin braid group B_{n+1} . In this paper we shall describe a similar presentation of Sp(n,p) for any prime number p>3.

The braid group B_n was first considered by A. Hurwitz in 1891 and more thoroughly investigated by E. Artin in 1925. Since then it has become an important topic in many fields of mathematics like topology, algebraic geometry, combinatorics and group theory.

^{*} Partially supported by the Technion VPR-Fund. Received December 2, 1990

 B_n can be described abstractly as a group with generators T_1, \cdots, T_{n-1} and with relations

(R1)
$$T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$$
 for $i = 1, ..., n-2$,

(R2)
$$T_i T_j = T_j T_i \quad \text{for } |i - j| > 1.$$

The group B_n is known to be residually finite but not many finite quotients of B_n are known explicitly. If we add the relation

$$(\mathbf{R3}) \qquad \qquad (T_1)^p = 1$$

we get a group $B_{n,p}$ investigated by Coxeter in [C]. This group is finite if and only if 1/p + 1/n > 1/2. For p = 2 we get the symmetric group S_n .

If p = 3 then one more relation

(R6)
$$(T_1T_2T_3)^4 = A^{-1}T_1^2A,$$

where $A = T_2 T_3^{-1} T_2^{(p-1/2)} T_4 T_3^2 T_4$, transforms $B_{n,p}$ into a finite group G_n . For nodd G_n is isomorphic to Sp(n,3) and for n even G_n is isomorphic to the stabilizer of one vector in Sp(n+1,3) where Sp(n+1,3) is considered as a group of linear transformations of an (n+1)-dimensional vector space over $\mathbb{Z}/3\mathbb{Z}$. This is the result of Assion in [A].

Our goal is to prove the following result (for p > 3 a prime number):

THEOREM 1: Let G_n be a group with generators T_1, \dots, T_{n-1} and relations

R1
$$T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$$
 for $i = 1, \dots, n-2$,

R2
$$T_iT_j = T_jT_i$$
 for $|i-j| > 1$,

$$R3 \qquad (T_1)^p = 1,$$

R4
$$(T_1T_2)^6 = 1$$
,

$$\begin{array}{ll} {\rm R4} & & (T_1T_2)^6 = 1, \\ {\rm R5} & & T_1^{(p+1/2)}T_2^4T_1^{(p-1/2)} = T_2^{-2}T_1T_2^2, \end{array}$$

R6
$$(T_1T_2T_3)^4 = A^{-1}T_1^2A$$
, where $A = T_2T_3^{-1}T_2^{(p-1/2)}T_4T_3^2T_4$.

Then a correspondence $T_i \to T_i$ extends to a monomorphism of G_n into G_{n+1} . For n even G_{n+1} is isomorphic to the symplectic group Sp(n,p) and the image of G_n in G_{n+1} is the stabilizer of one vector.

1. Notation and Preliminaries

Let p be a fixed prime number greater than 3 and let F be a field with p elements. Let V_k be a k-dimensional vector space over F with a fixed basis $\delta_1, \ldots, \delta_k$ and with an alternating, bilinear, intersection form given by $(\delta_i, \delta_{i+1}) = 1$ for $i = 1, \ldots, k-1$ and $(\delta_i, \delta_j) = 0$ for |i-j| > 1. There is a natural sequence of embeddings $V_1 \subset V_2 \subset \cdots$ corresponding to $\{\delta_1\} \subset \{\delta_1, \delta_2\} \subset \cdots$. For k even the form is non-degenerate and the symplectic group $\mathrm{Sp}(k, p)$ can be identified with the group $\mathrm{Sp}(k, F)$ of the linear transformations of V_k which preserve the intersection form.

Linear transformations act on vectors of V_k on the right side. For every $v \in V_k$ we denote by θ_v the linear transformation of V_k defined by $(u)\theta_v = u - (u,v)v$ (the symplectic transvection with respect to vector v).

Transvection with respect to a basis vector δ_i will be denoted by θ_i . Clearly $(\theta_v)^p = 1$, so we can treat exponents of transvections as elements of the field F. For $\alpha \in F$ we shall write $\theta_{i,\alpha}$ for $(\theta_i)^{\alpha}$ and $\theta_{v,\alpha}$ for $(\theta_v)^{\alpha}$. Conjugation in a group will be denoted by "*" so $A^*B = B^{-1}AB$ for any pair of elements A, B in a group.

Let $e_{2m+1} = \delta_1 + \delta_3 + \ldots + \delta_{2m+1}$. Clearly $(e_{2m+1}, \delta_{2m+2}) = 1$ and $(e_{2m+1}, \delta_i) = 0$ for $i \neq 2m+2$.

For k even define

$$\operatorname{Sp}^{\sim}(k,F) = \operatorname{Sp}(k,F) = \{h \in \operatorname{Aut}(V_k) | ((u)h,(v)h) = (u,v) \text{ for all } u,v \in V_k\}$$

and $\operatorname{Sp}^{\sim}(k-1,F) = \operatorname{Stab}_{\operatorname{Sp}(k,F)}(e_{k-1})$. Then $\operatorname{Sp}^{\sim}(k-2,F)$ can be identified with $\operatorname{Stab}_{\operatorname{Sp}(k,F)}\{e_{k-1},\delta_k\}$. If $h \in \operatorname{Sp}(k-2,F)$ we can extend it to $h' \in \operatorname{Sp}^{\sim}(k,F)$ letting $(e_{k-1})h' = e_{k-1}$ and $(\delta_k)h' = \delta_k$.

We want to find a presentation of the group $\mathrm{Sp}^{\sim}(k,F)$ for any k.

We denote by G_n a group with generators T_1, \ldots, T_{n-1} and relations

R1
$$(T_{i+1})^*T_i = (T_i)^*(T_{i+1})^{-1}$$
 for $i = 1, ..., n-2$,

R2
$$T_iT_j = T_jT_i$$
 for $|i-j| > 1$,

R3
$$(T_1)^p = 1$$
,

R4
$$(T_1T_2)^6 = 1$$
,

R5
$$((T_2)^4)^*T_1^{(p-1/2)} = (T_1)^*T_2^2$$
,

R6
$$(T_1T_2T_3)^4 = ((T_1)^2)^*T_2T_3^{-1}T_2^{(p-1/2)}T_4T_3^2T_4$$
 (only for $n > 4$).

The first two relations R1 and R2 define the classical braid group B_n so G_n is a quotient of B_n .

By relations R1 and R3 $(T_i)^p = 1$ for all i so, as in the case of the transvections, we can consider exponents of T_i 's as elements of F. We shall write $T_{i,a}$ for $(T_i)^a$, e.g. $T_{1,1/2} = T_{1,(p+1/2)} = (T_1)^{(p+1/2)}$.

Let $\phi_n(T_i) = \theta_i, i = 1, ..., n-1$. Direct verification shows that ϕ_n maps relations R1-R6 onto true relations in $\operatorname{Sp}^{\sim}(n-1, F)$ so ϕ_n extends to a homomorphism $\phi_n : \mathbf{G}_n \to \operatorname{Sp}^{\sim}(n-1, F)$. Theorem 1 of the introduction is equivalent to

THEOREM 1: ϕ_n is an isomorphism.

We shall now prove Theorem 1 for n = 3. We shall use a known presentation of Sp(2, p) = Sp(2, F).

1.1 PROPOSITION (J.G. Sunday): The group Sp(2, p) has a presentation with generators S, T and relations $S^p = T^2 = (ST)^3 = (S^{(p+1/2)}TS^4T)^2$ where

$$S = \begin{bmatrix} -1 & 0 \\ -1 & -1 \end{bmatrix} \quad \text{and} \quad T = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

1.2 PROPOSITION: ϕ_3 is an isomorphism.

Proof: In our standard basis δ_1, δ_2 the transvections θ_1, θ_2 are represented by matrices

$$\theta_1 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
 and $\theta_2 = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$

where the action is on the right on row vectors. Let $D = \theta_1 \theta_2 \theta_1$. Then T = D and $S = D^2 \theta_1$. So $\phi_3 : G_3 \to \operatorname{Sp}(2,p)$ is onto. We shall define the inverse map ψ . Let $\psi(S) = (T_1 T_2 T_1)^2 T_1 = A, \psi(T) = T_1 T_2 T_1 = B$. We have to check that the relations defined in 1.1 are mapped onto relations in G_3 . We have $T_1 B = B T_2$ by R1 and $T_i B^2 = B^2 T_i$ by R1. $B^4 = (T_1 T_2)^6 = 1$ by R1 and R4. So $A^p = B^{2p} T_1^p = B^2$ and

$$(AB)^3 = B^2T_1B^3T_1B^3T_1B = T_1T_2T_1B^9 = B^{10} = B^2$$

Finally

$$(A^{(p+1/2)}BA^4B)^2 = (B^{p+1}T_1^{(p+1/2)}B^9T_1^4B)^2$$

$$= B^{p+1}T_1^{(p+1/2)}B^9T_1^4B^{p+2}T_1^{(p+1/2)}B^9T_1^4B$$

$$= T_1^{(p+1/2)}T_2^4T_1^{(p+1/2)}T_2^4$$

$$= (\text{by R5 and R3}) \quad T_2^{-2}T_1T_2^2T_1T_2^4$$

$$= (\text{by R1}) \quad B^2$$

as required.

1.3 LEMMA: If $u \in V_n$, $h \in \operatorname{Sp}^{\sim}(n, F)$ and v = (u)h then $\theta_v = (\theta_u)^*h$.

Proof: For any $w \in V_n$ we have

$$(w)h^{-1}\theta_u h = ((w)h^{-1} - ((w)h^{-1}, u)u)h = w - ((w)h^{-1}, u)(u)h$$
$$= w - (w, (u)h)(u)h = w - (w, v)v = (w)\theta_v.$$

1.4 COROLLARY: The following relations are satisfied in G_n :

R7
$$(T_{i,b})^*T_{i+1,a} = (T_{i+1,ba^2})^*T_{i,-1/a}$$

Proof: It suffices to prove the corollary for b=1. Since the pair T_i, T_{i+1} is conjugate to the pair T_1, T_2 in G_n , it suffices to prove the corollary for i=1. We denote by L the left side of R7 and by R the right side. We apply ϕ_n to both sides of R7. $\phi_n(T_1) = \theta_1$. Let $u = (\delta_1)T_{2,a} = \delta_1 - a\delta_2$. By 1.3, $\phi_n(L) = \theta_u$. $\phi_n(T_2) = \theta_2$. Let $w = a\delta_2$. Then $\theta_w = \theta_{2,a^2}$,

$$(w)\theta_{1,-1/a} = w + (1/a)(w,\delta_1)\delta_1 = -u.$$

Clearly $\theta_{\mathbf{u}} = \theta_{-\mathbf{u}}$ and, by 1.3, $\phi_n(R) = \theta_{\mathbf{u}}$. Thus $\phi_n(R) = \phi_n(L)$. But by 1.2, ϕ_n restricted to the subgroup of G_n generated by T_1 and T_2 is a monomorphism, so R = L.

2. Relations Between G_n and G_{n-1} for n Even

We fix an even number $n \geq 4$ and assume that Theorem 1 is true for n-1. In this section we shall prove that ϕ_n is an isomorphism and in section 4 we shall prove that ϕ_{n+1} is an isomorphism. Theorem 1 will follow by induction.

Let $\mathbf{H}_{i,k}$ be the subgroup of \mathbf{G}_n generated by $T_i, T_{i+1}, \ldots, T_k, k < n$. It follows from our assumptions that ϕ_n restricted to $\mathbf{H}_{1,n-2}$ is a monomorphism.

2.1 LEMMA: Suppose that ϕ_m restricted to $\mathbf{H}_{1,k}$ is a monomorphism for some k < m (this is true in particular for m = n and k < n - 1). Let $A, B \in \mathbf{H}_{i,i+k-1}, i+k-1 < m$, be such that $\phi_m(A) = \phi_m(B)$. Then A = B.

Proof: Let
$$D = T_{m-1}T_{m-2}\cdots T_1$$
. For $j < m-1, T_j^*D = T_{j+1}$ so

$$D^{-1}\mathbf{H}_{1,k}D = \mathbf{H}_{2,k+1}$$
 and $D^{1-i}\mathbf{H}_{1,k}D^{i-1} = \mathbf{H}_{i,i+k-1}$.

Let $\phi_m(D) = d \in \operatorname{Sp}^{\sim}(m-1, F)$. Then for $A \in \mathbf{H}_{1,k}, \phi_m(A)^*d = \phi_m(A^*D)$. It follows that ϕ_m restricted to $\mathbf{H}_{i,i+k-1}$ is a monomorphism.

For k odd, k < n, let E_k denote the transvection with respect to vector e_k . Let $\Gamma_1 = T_1$ and for k odd, k > 1 let

$$\Gamma_k = (\Gamma_{k-2})^* T_{k-1} T_{k,-1} T_{k-1,-1/2} T_{k+1} T_{k,2} T_{k+1}.$$

2.2 Lemma: (i) $\phi_n(\Gamma_k) = E_k$ for $k = 1, 3, \dots, n-1$.

(ii)
$$\phi_n(\Gamma_k^2) = (E_{k-2}\theta_{k-1}\theta_k)^4$$
 for $k = 3, ..., n-1$.

Proof: (i) follows by induction from Lemma 1.3 and definitions. The action of both sides of (ii) on V_n can be compared directly.

- 2.3 LEMMA: (i) Γ_{n-3} commutes with T_k for k not equal to n-2.
- (ii) Let $\sigma(T_1) = \Gamma_{n-3}$, $\sigma(T_2) = T_{n-2}$, $\sigma(T_3) = T_{n-1}$. Then σ extends to a homomorphism $\sigma: \mathbf{G_4} \to \mathbf{G_n}$.
- (iii) $(\Gamma_{n-3}T_{n-2}T_{n-1})^{4p} = 1.$

Proof: $\Gamma_{n-3} \in \mathcal{H}_{1,n-2}$. By 2.2, $\phi_n(\Gamma_{n-3}) = E_{n-3}$. Clearly E_{n-3} commutes with θ_k for k < n-2, hence Γ_{n-3} commutes with T_k for k < n-2 by 2.1. Also by 2.2 and 2.1,

$$\Gamma_{n-3}^2 = (\Gamma_{n-5}T_{n-4}T_{n-3})^4 \in \mathbf{H}_{1,n-3}, \quad (\Gamma_{n-3})^p = 1,$$

hence $\Gamma_{n-3} \in \mathbf{H}_{1,n-3}$, and Γ_{n-3} commutes with T_{n-1} by R2. There exists $h \in \mathrm{Sp}^{\sim}(n-1,p)$ such that $(\delta_1)h = e_{n-3}$ and $(\delta_2)h = \delta_{n-2}$. Thus, by 1.3, any relation between θ_1 and θ_2 corresponds to a relation between E_{n-3} and θ_{n-2} . Since $\Gamma_{n-3} \in \mathbf{H}_{1,n-3}$ it follows by 2.1, 2.2 and the definitions that σ takes relations R1-R5 onto relations in \mathbf{G}_n . It remains to prove (iii) for n=4.

$$(T_1T_2T_3)^4 = (T_1T_2)^3T_3T_2T_{1,2}T_2T_3$$
 (by R1 and R2)
= $T_{1,-2}(T_{2,-1}T_{1,-2}T_{2,-1}T_3T_2T_{1,2}T_2)T_3$ (by R4 and R1).

Each factor of the last expression has order p in G_n , by R3. If we prove that the factors commute with each other we are done. By R1 and R2 the first factor commutes with the others and we have

$$T_{2,-1}T_{1,-2}T_{2,-1}T_3T_2T_{1,2}T_2T_3 = T_3T_2T_{1,2}T_2T_3T_{2,-1}T_{1,-2}T_{2,-1}.$$

By R4 and R1 we have $T_2T_{1,2}T_2 = T_{1,-4}T_{2,-1}T_{1,-2}T_{2,-1}$. Since also T_1 commutes with T_3 and with $T_2T_{1,2}T_2$ we are done.

It follows from Lemma 2.3 that there exists a split epimorphism $\rho_n: \mathbf{G}_n \to \mathbf{G}_{n-1} \cong \mathbf{H}_{1,n-2}$ such that $\rho_n(T_j) = T_j$ for $j = 1, \ldots, n-2$ and $\rho_n(T_{n-1}) = \Gamma_{n-3}$. Let $C_1 = \Gamma_{n-3}T_{n-1,-1}, C_i = C_{i-1}^*T_{n-i}$ for $i = 2, \ldots, n-2$. Clearly C_i belongs to the kernel of ρ_n .

2.4 LEMMA: (i) ker ρ_n is generated by C_1, \ldots, C_{n-2} , and $C_i^p = 1$ for $i = 1, \ldots, n-2$.

(ii) Let C be the commutator $C = [C_1, C_2]$. Then $C^p = 1$ and the commutant subgroup $(\ker \rho_n)'$ is cyclic, central, generated by C.

Proof: (i) Clearly $\Gamma_{n-3}^p = 1$ and Γ_{n-3} commutes with T_{n-1} , hence $C_i^p = 1$ for $i = 1, \ldots, n-2$. Since ρ_n splits $\ker \rho_n$ is generated by the conjugates of C_1 by the elements of $\mathbf{H}_{1,n-2}$. It suffices to prove that $C_i^*T_j$ belongs to the subgroup \mathbf{K} generated by C_1, \ldots, C_{n-2} for $j = 1, \ldots, n-2$. It follows from R1, R2, and 2.3 that $C_i^*T_j = C_i$ for j < n-i-1 or j > n-i. Also $C_i^*T_{n-i-1} = C_{i+1}$ for i < n-2.

We shall prove that $C_2^*T_{n-2} = C_2C_1^{-1}C_2$. We have

$$C_2C_1^{-1}C_2 = T_{n-2-1}T_{n-1-1}\Gamma_{n-3}T_{n-2}\Gamma_{n-2}^{-1}T_{n-1}T_{n-2-1}\Gamma_{n-3}T_{n-1-1}T_{n-2} = T_{n-2-1}T_{n-2}$$

(by R1 and 2.3ii)

$$T_{n-2,-1}T_{n-1,-1}T_{n-2,-1}\Gamma_{n-3}T_{n-2}T_{n-1}T_{n-2,-1}\Gamma_{n-3}T_{n-1,-1}T_{n-2} =$$

(by R1 and 2.3i)

$$T_{n-2,-1}T_{n-1,-1}T_{n-2,-1}T_{n-1,-1}\Gamma_{n-3}T_{n-2}T_{n-1}\Gamma_{n-3}T_{n-1,-1}T_{n-2} =$$

(by R1 and 2.3i)

$$T_{n-2,-2}T_{n-1,-1}T_{n-2,-1}\Gamma_{n-3}T_{n-2}\Gamma_{n-3}T_{n-2} =$$

(by R1 and 2.3ii)

$$T_{n-2,-2}T_{n-1,-1}T_{n-2,-1}T_{n-2}\Gamma_{n-3}T_{n-2,2} =$$

$$T_{n-2,-1}C_2T_{n-2,1}=C_2^*T_{n-2}$$

as required.

We shall prove now by induction that $C_j^*T_{n-j} = C_jC_{j-1}^{-1}C_j \in \mathbf{K}$ for $j = 2, \ldots, n-2$. Conjugating each term of the last equality by $T_{n-j-1}T_{n-j}$ we get $(C_{j+1}^*T_{n-j-1}) = C_{j+1}C_j^{-1}C_{j+1}$. Starting from the equality $C_2^*T_{n-2} = C_2C_1^{-1}C_2$ we get the required result by induction.

It remains to conjugate C_{n-2} by T_1 , but since $\mathbf{H}_{1,n-2}$ is also generated by $T_2, T_3, \ldots, T_{n-2}, \Gamma_{n-3}$ we shall conjugate by Γ_{n-3} instead.

$$C_{n-2}^*\Gamma_{n-3} =$$

(by 2.3)
$$(C_2^*\Gamma_{n-3})^*T_{n-3}T_{n-4}\cdots T_2.$$

$$C_2^*\Gamma_{n-3}=\Gamma_{n-2}^{-1}T_{n-2,-1}T_{n-1,-1}\Gamma_{n-3}T_{n-2}\Gamma_{n-3}=$$

(by 2.1 and 2.3ii)

$$\Gamma_{n-3}^{-1}T_{n-2,-1}T_{n-1,-1}T_{n-2}\Gamma_{n-3}T_{n-2} =$$

(by 2.1)
$$\Gamma_{n-3}^{-1}T_{n-1}T_{n-2,-1}T_{n-1,-1}\Gamma_{n-3}T_{n-2}=C_1^{-1}C^2\in\mathbf{K}.$$

(ii)
$$C = C_1 C_2 C_1^{-1} C_2^{-1} =$$

 $\Gamma_{n-3}T_{n-1,-1}T_{n-2,-1}T_{n-1,-1}\Gamma_{n-3}T_{n-2}\Gamma_{n-3}^{-1}T_{n-1}T_{n-2,-1}T_{n-1}\Gamma_{n-3}^{-1}T_{n-2} =$ (by 2.3ii)

$$\Gamma_{n-3}T_{n-1,-1}T_{n-2,-1}T_{n-1,-1}T_{n-2,-1}\Gamma_{n-3}T_{n-2}T_{n-1}T_{n-2,-1}T_{n-1}\Gamma_{n-3}^{-1}T_{n-2} =$$

(by R1)

$$\Gamma_{n-3}T_{n-1,-1}T_{n-2,-1}T_{n-1,-1}T_{n-2,-1}\Gamma_{n-3}T_{n-1,-1}T_{n-2}T_{n-1}T_{n-1}\Gamma_{n-3}^{-1}T_{n-2} =$$

(by 2.3i)

$$\Gamma_{n-3}T_{n-1,-1}T_{n-2,-1}T_{n-1,-1}T_{n-2,-1}T_{n-1,-1}\Gamma_{n-3}T_{n-2}\Gamma_{n-3}^{-1}T_{n-1}T_{n-1}T_{n-2} =$$

(by R1 and 2.3ii)

$$\Gamma_{n-3}(T_{n-1,-1}T_{n-2,-1})^3\Gamma_{n-3}T_{n-2}T_{n-1}T_{n-1}T_{n-2}$$

By R4 and R1 the expression in the bracket is equal to $(T_{n-2}T_{n-1})^3$, so by R1 and 2.3 we have $C = (\Gamma_{n-3}T_{n-2}T_{n-1})^4$. By 2.3iii, $C^p = 1$.

We shall prove that C lies in the center of G_n . By R1, R2, and 2.3, C commutes with T_i for $i \neq n-3$. We have seen before that

$$C = \Gamma_{n-3}(T_{n-1}T_{n-2})^{-3}\Gamma_{n-3}T_{n-2}T_{n-1}T_{n-1}T_{n-2}$$
$$= \Gamma_{n-3}T_{n-1,-2}(\Gamma_{n-3}^*T_{n-2}T_{n-1}T_{n-1}T_{n-2}).$$

Since T_{n-3} commutes with Γ_{n-3} and with T_{n-1} it remains to prove that it commutes with $\Gamma_{n-3}^*T_{n-2}T_{n-1,2}T_{n-2}$ or that

$$A = \Gamma_{n-3}^* T_{n-2} T_{n-1,2} T_{n-2} T_{n-3} T_{n-2,-1} T_{n-1,-2} T_{n-2,-1}$$

is equal to Γ_{n-3} . By R1 and R2

$$A = \Gamma_{n-3}^* T_{n-2} T_{n-3,-1} T_{n-1,2} T_{n-2} T_{n-1,-2} T_{n-3} T_{n-2,-1} =$$

(by R7)

$$\Gamma_{n-3}^* T_{n-2} T_{n-3,-1} T_{n-2,-1/2} T_{n-1,4} T_{n-2,1/2} T_{n-3} T_{n-2,-1}$$

Let $u = (e_{n-3})T_{n-2}T_{n-3,-1}T_{n-2,-1/2} = e_{n-5} + 2\delta_{n-3} = (e_{n-5})T_{n-4}T_{n-3,2}T_{n-4}$. Then by 1.3,

$$\phi_n(\Gamma_{n-3}^*T_{n-2}T_{n-3,-1}T_{n-2,-1/2})=\theta_u=\phi_n(\Gamma_{n-5}^*T_{n-4}T_{n-3,2}T_{n-4}).$$

By 2.1 we have $\Gamma_{n-3}^*T_{n-2}T_{n-3,-1}T_{n-2,-1/2}=\Gamma_{n-5}^*T_{n-4}T_{n-3,2}T_{n-4}$ commutes with T_{n-1} . Therefore

$$\Gamma_{n-3}^* T_{n-2} T_{n-3,-1} T_{n-2,-1/2} T_{n-1,4} = \Gamma_{n-3}^* T_{n-2} T_{n-3,-1} T_{n-2,-1/2}$$

and $A = \Gamma_{n-3}$. So C belongs to the center of G_n . Now for i < j we have

$$[C_i, C_j] = [C_1, C_2]^* T_{n-3} T_{n-4} \cdots T_{n-j} T_{n-2} T_{n-3} \cdots T_{n-i} = C.$$

Therefore the commutant subgroup of $\ker \rho_n$ is the cyclic subgroup of order p generated by C. This concludes the proof of Lemma 2.4.

We shall define a map $\rho': \operatorname{Sp}^{\sim}(n-1,F) \to \operatorname{Sp}^{\sim}(n-2,F)$. First let $p_{n-1}: V_{n-1} \to V_{n-2}$ be a linear map such that $(\delta_i)p_{n-1} = \delta_i$ for i < n-1 and $(\delta_{n-1})p_{n-1} = -e_{n-3}$ so ker p_{n-1} is spanned by e_{n-1} . Now for $u \in V_{n-2}$ and $h \in \operatorname{Sp}^{\sim}(n-1,F)$ let $(u)\rho'(h) = ((u)h)p_{n-1}$. It is easy to check that ρ' is a homomorphism and we have a commutative diagram with exact rows:

We want to prove that ϕ_n is an isomorphism. By the induction hypothesis ϕ_{n-1} is an isomorphism, so it suffices to prove that $\phi_n|\ker\rho_n$ is an isomorphism. We shall determine $\ker\rho'$. If $h\in\ker\rho'$ then $(\delta_j)h=\delta_j+a_je_{n-1}$ for $j=1,\ldots,n-1$. Also $(e_{n-1})h=e_{n-1}$. It follows that the correspondence $h\to(a_1,\ldots,a_{n-2})$ defines a homomorphism, say μ , of $\ker\rho'$ into an abelian group F^{n-2} . Let $h_i=\phi_n(C_i)$ for $i=1,\ldots,n-2$. Then $h_i\in\ker\rho'$. $(\delta_j)h_1=\delta_j$ for j< n-2 and $(\delta_{n-2})h_1=\delta_{n-2}+e_{n-1}$. It follows that $(\delta_j)h_i=\delta_j$ for j< n-i-1 and $(\delta_{n-i-1})h_i=\delta_{n-i-1}+e_{n-1}$. Thus $\mu(h_i), i=1,\ldots,n-2$ form a basis of F^{n-2} and μ is onto. If h belongs to $\ker\mu$ then $(\delta_j)h=\delta_j$ for $j=1,\ldots,n-1$, $(\delta_n)h=\delta_n+ae_{n-1}$ so $\ker\mu$ is a cyclic group of order p, or a trivial group. But $(\delta_n)\phi_n(C)=\delta_n+2e_{n-1}$ and $\phi_n(C)\in\ker\mu$. So $\ker\mu$ is not trivial, $\ker\rho'$ has p^{n-1} elements and $\phi_n|\ker\rho_n$ is onto. By Lemma 2.4 $\ker\rho_n$ has at most p^{n-1} elements, so $\phi_n|\ker\rho_n$ is an isomorphism. We have proven the following:

2.6 PROPOSITION: ϕ_n is an isomorphism.

3. Some Properties of G_{n+1}

We assume that n > 2 is a fixed even number and that ϕ_n is an isomorphism. Thus ϕ_{n+1} restricted to $H_{1,n-1}$ is a monomorphism.

We let $S = (T_n)^* T_{n-1,-1} T_{n-2,-2} T_{n-1,-1} \in G_{n+1}$ and we let **H** be the subgroup of G_{n+1} generated by $T_1, \ldots, T_{n-2}, S, T_n$. This section will be devoted to a proof of the following

3.1 PROPOSITION: Let $W \in \mathbf{G}_{n+1}$ be such that $(\delta_n)W = \delta_n$. Then $W \in \mathbf{H}$.

An element W of G_{n+1} can be written in a form $W \equiv \prod_{i=1}^{s} T_{j(i),a(i)}$ where by " \equiv " we mean equality in a free group while $W = W_1$ means equality in the group

 \mathbf{G}_{n+1} . We shall say that a word $W = \prod_{i=1}^s T_{j(i),a(i)}$ is reduced if $j(i) \neq j(i+1)$ and $\alpha(i) \neq 0$ for $i=1,\ldots,s$. If W is reduced then the length of W is $\ell(W)=s$. We shall say that W represents a vector $u \in V_n$ if $(\delta_n)W=u$. We want to prove by induction on $\ell(W)$ that if W represents δ_n then $W \in \mathbf{H}$. Applying consecutive terms of W to δ_n we get a sequence of vectors. We shall prove Proposition 3.1 by induction on the "complexity" of these vectors. If $v = \sum_{i=1}^n a_i \delta_i \in V_n$ we let $a_0 = 0 = a_{n+1}$ to unify notation.

3.2 DEFINITION. Let $0 \neq v = \sum_{i=1}^{n} a_i \delta_i \in V_n$. Let a_r be the first non-zero coordinate of v. Then r(v) = r. Let e(v) = 1 if $a_n = 0$ or $a_n = 1$ and e(v) = 2 otherwise. A coordinate a_i is passive if $a_i = 0$ and $a_{i-1} = a_{i+1} \neq 0$. Let P be the number of the passive coordinates of v and let N be the number of the non-zero coordinates of v. Vector v is special if

$$v \neq \delta_n$$
 and $v = b(\delta_{n-2k} + \delta_{n-2k+2} + \ldots + \delta_n).$

The complexity of v equals c(v) = 2(n-r) + e(v) + 1 if v is special and c(v) = 2(n-r) + e(v) + P - N if v is not special.

3.3 DEFINITION. Let $0 \neq v = \sum_{i=1}^{n} a_i \delta_i V_n$. A coordinate a_j is reducing if $a_{j+1} \neq a_{j-1}$ and if, after we replace a_j by a suitable b_j , the complexity of v decreases. $T_{j,\alpha}$ reduces v if $c(v)T_{j,\alpha} < c(v)$.

If a_j is a reducing coordinate of v then $T_{j,\alpha}$ reduces v for a suitable choice of α because $(v)T_{j,\alpha} = v + \alpha(a_{j+1} - a_{j-1})\delta_j$, so we can change a_j into an arbitrary b_j .

- 3.4 LEMMA: Let $0 \neq v = \sum_{i=1}^{n} a_i \delta_i \in V_n$. Let a_r be the first non-zero coordinate of v. Let a_j be a coordinate of v such that $a_{j+1} \neq a_{j-1}$. Let $w = (v)T_{j,\alpha}, \alpha \neq 0$, and let $b_j = a_j + \alpha(a_{j+1} a_{j-1})$ be the j-coordinate of w. Then
- (i) $|c(w) c(v)| \le 1$.
- (ii) a_j is a reducing coordinate of v if and only if one of the following is satisfied:
- (a) $j = n, a_{n-1} \neq 0, a_n \neq 1$. $T_{j,\alpha}$ reduces v if $b_n = 1$, i.e. if $\alpha = (1 a_j)/(a_{j+1} a_{j-1})$.
- (b) $r < j < n, a_j = 0, a_{j+1} \neq a_{j-1}$. $T_{j,a}$ reduces v if it does not introduce a new passive coordinate, i.e. $T_{j,\alpha}$ does not reduce v for at most one value of α .
- (c) $r < j < n, a_j \neq 0, a_j$ has a passive neighbour and a nonzero neighbour. $T_{j,\alpha}$ reduces v whenever $b_j \neq 0$, i.e. $T_{j,\alpha}$ does not reduce v for exactly one value of $\alpha, \alpha = -a_j/(a_{j+1} a_{j-1})$.

- (d) $j = r, a_{r+1} \neq 0$ and $v a_r \delta_r$ is not special. $T_{j,\alpha}$ reduces v when $b_j = 0$, i.e. $\alpha = -a_j/(a_{j+1} a_{j-1})$.
 - (e) j = r 1 and v is special. $T_{j,\alpha}$ reduces v for all α .

Proof: Follows from the definitions.

- 3.5 LEMMA: Let $0 \neq v = \sum_{i=1}^{n} a_i \delta_i \in V_n$. Then
- (i) $c(v) \ge 0$. c(v) = 0 if and only if $v = \delta_n$. v has a reducing coordinate.
- (ii) If $a_t, a_{t+1} \neq 0$ then there exists a reducing coordinate $a_m, m \leq t$, unless t = r(v) and $v a_r \delta_r$ is special.
- (iii) Suppose a_j is a reducing coordinate of v satisfying 3.4ii(b) or 3.4ii(c). Let |k-j|=1, let $w=(v)T_{k,\beta}$, and let b_k be the k-coordinate of w. Then a_j is a reducing coordinate of w and satisfies again 3.4ii(b) or 3.4ii(c) with the exception of the following cases:
- (a) $a_j = 0, a_k \neq 0$ and the neighbours of a_j in w are equal to zero. Then N decreases so c(w) > c(v).
- (b) $a_j = 0$, $a_k \neq 0$ and the neighbours of a_j in w are equal but not zero. Then a_j becomes passive so P increases and c(w) > c(v).
- (c) $a_j = 0$, $a_k = 0$ and the neighbours of a_j in w are equal. Then a_j becomes passive so P increases by 1 and N increases by 1, c(w) = c(v). Also a_k satisfies 3.4ii(b) and is reducing.
- (d) $a_j \neq 0, a_k \neq 0, n > k > r$ and $b_k = 0$. Then, if a_k has a passive neighbour, c(w) = c(v) and a_k is reducing. If a_k has no passive neighbour then c(w) > c(v).
- (e) $a_j \neq 0, a_k \neq 0, a_k \neq 1, k = n, b_k = 0$. Then a_k is reducing and c(w) = c(v).
- (f) $a_i \neq 0, a_k = 1, k = n, b_k = 0$. Then c(w) > c(v).
- (g) $a_j \neq 0, a_k \neq 0, k = r = j 1, b_k = 0$ and w is special. Then c(w) > c(v).
- (h) $a_j \neq 0, a_k \neq 0, k = r = j 1, b_k = 0$ and w is not special.

Proof: Part (i) follows from the definitions. Suppose $a_{t-i-1} = 0, a_{t-i} \neq 0, a_{t-i+1} \neq 0, \dots, a_t \neq 0, a_{t+1} \neq 0$. If a_{t-i-1} is passive then a_{t-i} is reducing. If a_{t-i-1} is not passive and $t-i \neq r$ then a_{t-i-1} is reducing. If t-i=r then a_{t-i} is reducing by 3.3iii(b) unless t=r and $v-a_r\delta_r$ is special. This proves part (ii). Part (iii) follows from definitions.

3.6 LEMMA-DEFINITION: Let $0 \neq v = \sum_{i=1}^{n} a_i \delta_i \in V_n$ and let r(v) = r. There exists a reduced word $W = \prod_{i=1}^{s} T_{j(i),\alpha(i)}$ of length c(v) representing v. There is no shorter word representing v, so W is called a minimal representative of v.

If $T_{j,\alpha}$ reduces v then there is a minimal representative of v with the last term $T_{j,-\alpha}$. A minimal representative W satisfies the following:

For all i, j(i) > r-1 if v is not special and j(i) > r-2 if v is special. j(i) = n for at most one value of i and $j(i) \neq n$ if $a_n = 1$.

If m < n then j(i) = m for at most two values of i.

If $a_m \neq 0$ is not reducing and has a non-zero neighbour then j(i) = m for at most one value of i.

Proof: If $T_{j,\alpha}$ reduces v then $(v)T_{j,\alpha}$ has lower complexity, so the existence of W with the last term $T_{j,-\alpha}$ follows from 3.5i by induction on c(v). There is no shorter representative of v by 3.4i. If v is not special then it will never become special in the reduction process, so the j-coordinate will never become reducing for j < r and j(i) > r - 1 for all i. If v is special then $(v)T_{r-1,a}$ is not special and j(i) > r - 2. If $a_n = 1$ then a_n is not reducing and the n-coordinate will never become reducing in the reduction process, by 3.4ii(a), so $j(i) \neq n$. Let $W_k = \prod_{i=1}^k T_{j(i),\alpha(i)}$ and let $v_k = (\delta_n)W_k$. Then $c(v_{k+1}) = c(v_k) + 1$ for all k. If j(t) = n then the n-coordinate of v_t is not 1 and a later change of the n-coordinate would not increase the complexity so $j(i) \neq n$ for i > t. Let m < n and let t_1 be the smallest value such that $j(t_1) = m$. Then the m-coordinate of v_{t_1} is not zero. If t_2 is the next such value then the m-coordinate of v_{t_2} is reducing. Either v_{t_2} is special and we cannot increase its complexity by one move or $m > r(v_{t_2})$. The m-coordinate is zero or it has a passive neighbour. If we increase complexity getting vector v_s , the neighbour remains passive and m > r(vs). A later change of the m-coordinate would not increase the complexity, so $j(i) \neq m$ for $i > t_2$. If the m-coordinate of v_{t_2} is not zero it has a passive neighbour, and the neighbour will remain passive in v. If a_m is not reducing in v then its other neighbour must be zero, so a_m has no non-zero neighbour. This completes the proof of the lemma.

We shall fix now a reduced word $W = \prod_{i=1}^s T_{j(i),\alpha(i)}$ representing δ_n . Let $W_k = \prod_{i=1}^k T_{j(i),\alpha(i)}$ and let $v_k = (\delta_n)W_k$. Let q be the smallest index such that $c(v_q) \geq c(v_{q+1})$, i.e. $c(v_k) < k$ for k > q. We shall prove that $W \in \mathbf{H}$ by induction on $s = \ell(W)$ and for a given s by induction on q. If s = 0 then $W = 1 \in \mathbf{H}$.

If q = 0 then $c(\delta_n) \ge c(v_1)$, hence $v_1 = \delta_n, j(1) \ne n - 1, T_{j(1),\alpha(1)} \in \mathbf{H}$, and $\prod_{i=2}^s T_{j(i),\alpha(i)}$ also represents δ_n . Therefore $W \in \mathbf{H}$ by induction on s.

Let $v_q = \sum_{i=1}^n a_i \delta_i$. Let a_r be the first nonzero coordinate of v_q .

Let j(q) = j, $\alpha(q) = \alpha$, j(q+1) = k, $\alpha(q+1) = \beta$. Then a_j is a reducing coordinate of v_q , since $c(v_q) > c(v_{q-1})$ and $v_{q-1} = (v_{q-1})T_{j,-\alpha}$.

3.7 LEMMA: (i) If $T_{j,\gamma}$ reduces v_q and $T_{m,\delta}$ reduces v_{q+1} and V is any minimal representative of $(v_q)T_{j,\gamma}$ and U is any minimal representative of $(v_{q+1})T_{m,\delta}$, then we may assume $W \equiv VT_{j,\gamma}T_{k,\beta}T_{m,\delta}U^{-1}$ and $\ell(W) < 2q + 2$. If $W' \equiv \prod_{i=1}^s T_{j'(i),\alpha'(i)}$ and W' represents δ_n and

$$\ell(W') < 2q + 2$$
 and $v'_k = (\delta_n) \prod_{i=1}^k T_{j'(i),\alpha'(i)}$

then $c(v'_{q+1}) < q+1$.

(ii) If a_k is reducing then we may assume that $T_{k,\beta}$ reduces v_q . Also we may switch j and k and assume that $W = W' \equiv \prod_{i=1}^s T_{j'(i),a'(i)}$ with $v'_q = v_q, j'(q) = k, j'(q+1) = j$.

(iii) If a_k is not reducing and V is any minimal representative of v_q , then we can replace W_q by V in W.

(iv) If |j-k|=1 and there exists γ such that $T_{j,\gamma}$ reduces v_q and v_{q+1} , then $W=W'_{q-1}T_{k,1/\gamma}T_{j,\beta\gamma^2}T_{k,-1/\gamma}U\equiv W',\ell(W')=\ell(W),v'_{q-1}=(v_q)T_{j,\gamma},v'_q=(v'_{q-1})T_{k,1/\gamma}$. If $c(v'_q)\leq c(v_{q-1})$ then $W\in H$. In particular if $v_q=v_{q+1}$ then $T_{i,-\alpha}$ reduces v_{q+1} , so

$$W = W_{q-1}T_{k,1-1/\alpha}T_{j,\beta\alpha^2}T_{k,1/\alpha}(W_{q-1})^{-1}$$
 and $v_q' = (v_{q-1})T_{k,-1/\alpha}$.

If $c(v'_q) \leq c(v_{q-1})$ then $W \in \mathbf{H}$.

Proof: (i) Let $W \equiv W_{q-1}T_{j,\alpha}T_{k,\beta}U_1$. Let V be any minimal representative of $(v_q)T_{j,\gamma}$ and let U be any minimal representative of $(v_{q+1})T_{m,\delta}$. Then

$$W \equiv (W_{q-1}T_{j,\alpha-\gamma}V^{-1})VT_{j,\gamma}T_{k,\beta}T_{m,\delta}U^{-1}(UT_{m,-\delta}U_1).$$

Brackets represent δ_n and have length smaller than $\ell(W)$. By induction it suffices to prove that $W \in H$ for $W \equiv VT_{j,\gamma}T_{k,\beta}T_{m,\delta}U^{-1}$ and then $\ell(W) < 2q + 2$. The second statement of (i) is obvious from definitions.

(ii) If $T_{k,\varepsilon}$ reduces v_q and V is a minimal representative of $(v_q)T_{k,\varepsilon}$, then $W = W_q T_{k,\beta} U = (W_q T_{k,\varepsilon} V^{-1})(V T_{k,\beta-\varepsilon} U)$, both brackets represent δ_n and the second bracket has length smaller than $\ell(W)$ since $\ell(V) = q - 1 \le \ell(U)$. So we may assume $T_{k,\beta} = T_{k,\varepsilon}$ reduces v_q . Now, by (i), $W = W_{q-1} T_{j,\alpha} T_{k,\beta} U$

where $U^{-1}T_{k,-\beta}$ is a minimal representative of v_q . It suffices to prove that $W'=W^{-1}=U^{-1}T_{k,-\beta}T_{j,\alpha}W_{q-1}\in \mathbf{H}$ which proves (ii).

- (iii) If a_k is not reducing and V is any minimal representative of v_q , then $W = W_q T_{k,\beta} U = (W_q V^{-1})(V T_{k,\beta} U)$. Both brackets represent δ_n and $\ell(W_q V^{-1}) = 2q < 2q + 1 = \ell(W)$ so we may assume $W = V T_{k,\beta} U$.
- (iv) By (i) we may assume $W=W'_{q-1}T_{j,-\gamma}T_{k,\beta}T_{j,\gamma}U$ with $v'_{q-1}=(v_q)T_{j,\gamma}$. Now by R7, $W=W'_{q-1}T_{k,1/\gamma}T_{j,\beta\gamma^2}T_{k,-1/\gamma}U$ as required.

If $c(v_q) \le c(v_{q-1})$ then $W \in \mathbf{H}$ by induction on q.

3.8 LEMMA: If either $v_q = v_{q+1}$ or |k-j| > 1, then $W = W' \equiv \prod_{i=1}^s T_{j'(i),\alpha'(i)}$ and j'(i) = j for at most one value of $i \leq q$. If also j = n then $j'(i) \neq n$ for all $i \leq q$.

If |k-j| = 1 and r < j < n, and r < k < n or k = n and $a_n \neq 1$, then $T_{j,\gamma}$ does not reduce v_q or v_{q+1} for at most two values of γ . In particular $W = W' \equiv \prod_{i=1}^s T_{j'(i),\alpha'(i)}$ and j'(i) = j for at most one value of $i \leq q$.

Proof: If |k-j| > 1 then, by R2, we can replace $T_{j,\alpha}T_{k,\beta}$ by $T_{k,\beta}T_{j,\alpha}$ in W getting W'. Now j'(i) = j a smaller number of times than j(i) = j for $i \leq q$. If |j-k| = 1 and $v_q = v_{q+1}$ then, by 3.7iv, $W'_q = W_{q-1}T_{k,-1/\alpha}$ and again j'(i) = j a smaller number of times than j(i) = j for $i \leq q$. Suppose now |k-j| = 1 and $v_q \neq v_{q+1}$. a_j is reducing and n > j > r. So a_j satisfies 3.4iib or 3.4iic. We have $c(v_q) \geq c(v_{q+1})$ and, by 3.7ii, if a_k is reducing then $c(v_q) > c(v_{q+1})$, therefore by 3.5 a_j is a reducing coordinate of v_{q+1} . By 3.4iib and 3.4iic $T_{j,\gamma}$ does not reduce v_q or v_{q+1} for at most two values of γ . Since p > 3 there exists γ such that $T_{j,\gamma}$ reduces v_q and v_{q+1} and then, by 3.7iv,

$$W = W' \equiv \prod_{i=1}^{s} T_{j'(i),\alpha'(i)}, \quad j'(q) = k \quad \text{and} \quad v'_{q-1} = (v_q)T_{j,\gamma}.$$

Since n > j > r the j-coordinate of v'_{q-1} is not reducing, not zero, and has a non-zero neighbour. Thus j'(i) = j for at most one value of i < q+1, by 3.6.

- 3.9 LEMMA: (i) If $W \in \mathbf{H}_{n-2,n}$ then $W \in \mathbf{H}$.
- (ii) If $W \in \mathbf{H}_{1,n-1}$ then $W \in \mathbf{H}$.
- (iii) If $v_q = \beta(\delta_r + \delta_{r+2} + \ldots + \delta_{n-2}) + \delta_n$, r even, $\beta \neq 1$, then $W \in \mathbf{H}$.

Proof: (i) $(\delta_i)W = \delta_i$ for i < n-3 and i = n. $(\delta_{n-3})W = \delta_{n-3} + a\delta_{n-2} + b\delta_{n-1} + c\delta_n$. Since $((\delta_{n-3})W, \delta_n) = 0$ we have b = 0. If also c = 0 then $(\delta_{n-3})WT_{n-2,a} = 0$

 δ_{n-3} . Now $(\delta_{n-1})WT_{n-2,a}=\alpha\delta_{n-2}+\beta\delta_{n-1}+\gamma\delta_n$. The intersection form is preserved so $\alpha=0,\beta=1$. $(\delta_{n-1})WT_{n-2,\alpha}T_{n,\gamma}=\delta_{n-1}$. We must also have $(\delta_{n-2})WT_{n-2,\alpha}T_{n,\gamma}=\delta_{n-2}$. It follows that $\phi_{n+1}(WT_{n-2,a}T_{n,\gamma})=1$ hence $W=T_{n,-\gamma}T_{n-2,-\alpha}\in \mathbb{H}$, by 2.1.

If $c \neq 0$ then $(\delta_{n-3})WT_{n-2,a-2c} = \delta_{n-3} + 2c\delta_{n-2} + c\delta_n$. Let $u = 2\delta_{n-2} + \delta_n = (\delta_n)T_{n-1,-1}T_{n-2,-2}T_{n-1,-1}$. Then, by 1.3, $\phi_{n+1}(S) = T_u$ hence

$$(\delta_{n-3})WT_{n-2,a-2c}S^{c/2}=\delta_{n-3}.$$

We continue as in the case c = 0 and get $\phi_{n+1}(WT_{n-2,a-2c}S^{c/2}T_{n,\gamma}) = 1$, so by 2.1, $W = T_{n,-\gamma}S^{-c/2}T_{n-2,2c-a} \in \mathbf{H}$.

(ii) Let $A=\phi_{n+1}(W)$. The subspace V_{n-1} is A-invariant and $(\delta_n)A=\delta_n$. For $i< n-1, (\delta_i)A\in V_{n-1}$ and $((\delta_i)A, \delta_n)=0$, hence V_{n-2} is A-invariant. There exists $B\in \operatorname{Sp}(n-2,F)$ such that A restricted to V_{n-2} equals B. Then $(\delta_i)AB^{-1}=\delta_i$ for $i\neq n-1$. Also $(\delta_{n-1})AB^{-1}\in V_{n-1}$. Since the intersection form is preserved it follows that $(\delta_{n-1})AB^{-1}=\delta_{n-1}$ and A=B. Since ϕ_{n-1} is an isomorphism there exists $W_1\in \mathbf{H}_{1,n-2}$ such that $\phi_{n-1}(W_1)=B=A$. Now, by $2.1, W=W_1\in \mathbf{H}_{1,n-2}\subset \mathbf{H}$.

(iii) Let U be a minimal representative of v_q . Since $a_n = 1, U \in \mathbf{H}_{r,n-1}$, by 3.6. If $k \neq n$ then v_{q+1} also has the last coordinate equal to 1 and, by 3.6 and 3.7i, $W \in \mathbf{H}_{1,n-1}$ so $W \in \mathbf{H}$, by part (ii). We may assume k = n. Then $v_q = v_{q+1}$ and, by 3.7i, $W = UT_{n,\beta}U^{-1}$. Since a_n is not reducing we can choose for U any minimal representative of v_q , by 3.7ii, e.g.

$$U^{-1} = T_{n-1,\beta/1-\beta} T_{n-2} T_{n-3} \cdots$$

$$T_{r+1} T_{r,-1} T_{r+1,-1/2} T_{r+2,-2} T_{r+3,-1/2} \cdots$$

$$T_{n-2,-2} T_{n-1,-\beta}.$$

Then $(\delta_n)U^{-1} = \alpha(\delta_r + \delta_{r+2} + \ldots + \delta_{n-2}) + \delta_n = w$, where $\alpha = \beta/\beta - 1$. By 1.3, $\phi_{n+1}(W) = \theta_{w,\beta}$. Also $W \in \mathbf{H}_{2,n}$.

Let $u_1 = \alpha \delta_{n-2} + \delta_n$, $u_2 = \alpha (\delta_{r+1} + \delta_{r+3} + \ldots + \delta_{n-3})$, $u_3 = w + u_2$, $u_4 = w - u_2$. Let U_1 be a minimal representative of u_1 . By 3.6, $U_1 \in \mathbf{H}_{n-2,n}$. Let $A_1 = (T_n)^*U_1$. Then $\phi_{n+1}(A_1) = \theta_{u_1}$, by 1.3, hence $(\delta_n)A_1 = \delta_n$ and $A_1 \in \mathbf{H}$ by (i). $u_3 = (u_1)T_{n-3}T_{n-4} \cdots T_r$, $u_4 = (u_1)T_{n-3,-1}T_{n-4,-1} \cdots T_{r,-1}$. Applying Lemma 3.6 with n replaced by n-2 we find $U_2 \in \mathbf{H}_{r,n-2}$ such that $(\delta_{n-2})U_2 = u_2$. Let $A_2 = (T_{n-2})^*U_2$, $A_3 = (A_1)T_{n-3}T_{n-4} \cdots T_r$, $A_4 = (A_1)T_{n-3,-1}T_{n-4,-1} \cdots T_{r,-1}$. Then $A_i \in \mathbf{H}, A_i \in \mathbf{H}_{2,n}, \phi_{n+1}(A_i) = \theta_{u_i}$ for i = 1, 2, 3, 4. Also $\theta_{u_3}\theta_{u_4} = (\theta_w)^2(\theta_{u_2})^2$. Indeed since $(w, u_2) = 0$, we have

$$(v)\theta_{u_3}\theta_{u_4} = v - (v, w + u_2)(w + u_2) - (v, w - u_2)(w - u_2)$$
$$= v - 2(v, w)w - 2(v, u_2)u_2 = (v)(\theta_w)^2(\theta_{u_2})^2$$

for any vector $v \in V_{n+1}$. Therefore $(\theta_{w,\beta})^2 = \phi_{n+1}(W^2) = \phi_{n+1}((A_3A_4A_2^{-2})^p)$. By 2.1, $W^2 \in \mathbf{H}$ and, since $W^p = 1, W \in \mathbf{H}$.

3.10 COROLLARY: (i) If $a_n = 1$ then $W \in \mathbf{H}$.

(ii) If $a_i = 0$ for i < n-2 and $v_q \neq b(\delta_{n-2} + \delta_n)$, then $W \in \mathbf{H}$.

Proof: (i) By 3.6, $W_q \in H_{1,n-1}$. If also $k \neq n$ then the last coordinate of v_{q+1} is also equal to 1 and, by 3.6 and 3.7i, $W \in \mathbf{H}_{1,n-1}$, so $W \in \mathbf{H}$ by 3.9. Suppose k = n. If $T_{k,\beta}$ changes the n-coordinate of v_q then, by 3.2, $c(v_{q+1}) > c(v_q)$ contrary to the choice of q. So suppose $v_{q+1} = v_q$. If there exists a reducing coordinate a_m of v_q different from a_{n-1} then, by 3.7i and 3.7iii, $W = W_{q-1}T_{m,\gamma}T_{n,\beta}T_{m,-\gamma}W_{q-1}^{-1}$. Now $T_{m,\gamma}$ cancels reducing the length of W. So we may assume that $a_{n-1} = 0$ is the only reducing coordinate of v_q . But then it follows easily from 3.4 that

$$v_a = b(\delta_r + \delta_{r+2} + \ldots + \delta_{n-2}) + \delta_n,$$

r even, and we are done by 3.9.

(ii) If $v_q \neq b(\delta_{n-2} + \delta_n)$ then $W_q \in \mathbf{H}_{n-2,n}$ by 3.6. If k > n-3 then, by 3.6 and 3.7i, $W_q \in \mathbf{H}_{n-2,n}$ and we are done by 3.9. If k < n-3 then T_k commutes with W_q and $\ell(W)$ decreases. If $a_{n-2} = 0$ and k = n-3 then T_k commutes with W_q and $\ell(W)$ decreases. If $a_{n-2} \neq 0$ then T_{n-3} increases $c(v_q)$, so $k \neq n-3$.

3.11 LEMMA: If j(i) = n - 1 for only one value of i < q + 1, then $W \in \mathbf{H}$.

Proof: We may assume j(1) = n - 1. Otherwise $T_{j(1),\alpha(1)} \in \mathbf{H}$ and we can reduce $\ell(W)$. By 3.10 we may assume that j(i) = n for exactly one value of i < q + 1. Since T_n commutes with $T_{j(i),\alpha(i)}$ for $i = 2, \ldots, q$ we may assume j(2) = n or j(q) = n as convenient. We have $a_{n-1} \neq 0$. If $k \neq n - 1$ we let j(q) = n and we are done by 3.8 and 3.10. So we may assume k = n - 1.

CASE 1: $a_n = a_{n-2}$. Then $v_q = v_{q+1}$ and j(q) = n so, by 3.8, W = W' with j'(q) = n - 1 and j'(i) < n for all $i \le q$. We are done by 3.10.

CASE 2: $a_n \neq a_{n-2} \neq 0$. We assume j(2) = n, so j(q) < n. If j(q) < n-2 then the j-coordinate is reducing for both v_q and v_{q+1} . By 3.7i we may assume

$$W = W_{q-1}T_{j,\alpha}T_{k,\beta}T_{j,\gamma}U = W_{q-1}T_{j,\alpha-\gamma}T_{k,\beta}U$$

and $\ell(W)$ reduces. If j(q) = n-2 then a_{n-2} is reducing, so either r = n-2, and we are done by 3.9, or a_{n-3} is passive. In the latter case

$$v_q = \ldots + a_{n-4}\delta_{n-4} + a_{n-2}\delta_{n-2} + a_{n-1}\delta_{n-1} + a_n\delta_n$$

where $a_{n-4} = a_{n-2}$;

$$v_{q+1} = \ldots + a_{n-4}\delta_{n-4} + a_{n-2}\delta_{n-2} + b_{n-1}\delta_{n-1} + a_n\delta_n.$$

Since p > 3 there exists γ such that $T_{n-2,\gamma}$ reduces v_q and v_{q+1} . Also

$$v'_{q-1} = (v_q)T_{n-2,\gamma} = \ldots + a_{n-4}\delta_{n-4} + b_{n-2}\delta_{n-2} + a_{n-1}\delta_{n-1} + a_n\delta_n$$

and we can choose γ such that $T_{n-1,1/\gamma}$ does not increase $c(v'_{q-1})$. We are done by 3.7iv.

CASE 3: $a_n \neq a_{n-2} = 0$ and $a_{n-1} = a_{n-3}$. Then a_{n-2} is not reducing and we may assume j(q) < n, so j(q) < n-2. If j(q) < n-3 then $T_{j(q),-\alpha}$ reduces v_{q+1} and we are done by 3.7i. If j(q) = n-3 then a_{n-3} is reducing, so $a_{n-4} \neq 0$ and there exists a reducing coordinate a_t with t < n-3, by 3.5ii. Clearly a_t is reducing in v_{q+1} and, by 3.7i, we may assume

$$W = W_{q-1}T_{j,\alpha}T_{k,\beta}T_{t,\gamma}U = W_{q-1}T_{j,\alpha}T_{t,\gamma}T_{k,\beta}U.$$

Now $j(q+1) = t \neq n-1$, so we are done by 3.8 and 3.10 as before.

CASE 4: $a_n \neq a_{n-2} = 0$ and $a_{n-1} \neq a_{n-3}$. Now a_{n-1} is not reducing and a_{n-2} is reducing, so we may assume j(q) = n - 2 by 3.7ii. We have

$$v_q = \ldots + a_{n-3}\delta_{n-3} + a_{n-1}\delta_{n-1} + a_n\delta_n,$$

$$v_{q+1} = \ldots + a_{n-3}\delta_{n-3} + b_{n-1}\delta_{n-1} + a_n\delta_n, \quad b_{n-1} \neq a_{n-3}.$$

Since p > 3 there exists γ such that $T_{n-2,\gamma}$ reduces v_q and v_{q+1} and $T_{n-1,1/\gamma}$ does not increase $c(v'_{q-1})$, where

$$v'_{q-1} = (v_q)T_{n-2,\gamma} = \ldots + a_{n-3}\delta_{n-3} + b_{n-2}\delta_{n-2} + a_{n-1}\delta_{n-1} + a_n\delta_n,$$

$$(v'_{q-1})T_{n-1,1/\gamma} = \ldots + a_{n-3}\delta_{n-3} + b_{n-2}\delta_{n-2} + b_{n-1}\delta_{n-1} + a_n\delta_n,$$

$$b_{n-2} = \gamma(a_{n-1} - a_{n-3}),$$

and

$$b_{n-1} = a_{n-1} + 1/\gamma(a_n - b_{n-2}) = 1/\gamma a_n + a_{n-3}.$$

We are done by 3.7iv.

3.12 LEMMA: If for some m < n we have j(i) = m for at most one value of $i \le q$, then $W \in \mathbf{H}$.

Proof (by induction on m, downwards): If m = n - 1 we are done by 3.11. Suppose that the lemma is true for m and suppose that j(i) = m - 1 for at most one value of i < q + 1.

CASE 1: There exists i_0 such that j(i) < m for $i > i_0$ and $j(i) \neq m-1$ for $i \le i_0$ (e.g. $j(i) \neq m-1$ for all $i \le q$ and $i_0 = q$, in particular m=1). By R2 we may assume that $j(i) \ge m$ for $i \le s$ and $j(i) \le m-1$ for i > s. By 3.10 and the induction hypothesis we may assume that j(i) = n for one value of $i \le q$ and, for $t = m, m+1, \ldots, n-1, j(i) = t$ for two values of $i \le q$. Thus $c(v_s) = 2(n-m)+1 = s$ and $r(v_s) \ge m$. In Definition 3.2, if v is not special then P < N-1. Thus $c(v_s) < 2(n-r)+e(v_s)-1$. It follows that v_s is special, $r(v_s) = m+1$, and for $i > s, (v_s)T_{j(i)} = v_s$. Therefore s = q and, by 3.4ii, j = m. Then $k \neq m, v_q = v_{q+1}$ and, by 3.8, $W = W' \equiv \prod_{i=1}^s T_{j'(i),\alpha'(i)}$ and j'(i) = j for at most one value of $i \le q$. We are done by the induction hypothesis.

CASE 2: $j(i_0) = m - 1$ and, for some $s > i_0, j(s) > m - 1$. By R2 we may assume that $j = j(q) > m - 1 \ge r$. If $v_q = v_{q+1}$ or |j - k| > 1 or |j - k| = 1 and r < j < n and r < k < n or k = n and $a_n \ne 1$, or k = r and the r-coordinate of v_{q+1} is not zero, then by 3.8, $W = W' \equiv \prod_{i=1}^s T_{j'(i),\alpha'(i)}$ and j'(i) = j for at most one value of i < q + 1. Then we are done by the induction hypothesis. We have $a_n \ne 1$ by 3.10. Let us consider the remaining cases.

j=r+1, k=r, and the r-coordinate of v_{q+1} equals 0. Then $j=m, m-1=r, c(v_q)=q=2(n-r)$. Also v_{q+1} is not special, $r(v_{q+1})=r+1, c(v_{q+1})=q-1=2(n-r-1)+1$, which is impossible for a non-special vector by 3.2.

j=n, k=n-1. Consider the highest index t < q such that j(t) > m-1. If $t < i_0$ we may assume that j(i) < m-1 for all $i > i_0$, by R2, and we are done by Case 1. If $t > i_0$ and j(t) < n-1 we may assume, by R2, that m-1 < j(q) < n

and we are done by 3.8. Let us suppose that j(t) = n - 1. We may assume by R2 that t = q - 1. Then $a_{n-1} \neq 0$, because a_n is reducing, and a_{n-1} is reducing in v_{q-1} . Therefore a_{n-2} is passive. Since $v_q \neq v_{q+1}$ we have $a_n \neq 0$, hence a_{n-1} is reducing in v_q . So

$$v_q = \ldots + a_{n-3}\delta_{n-3} + a_{n-1}\delta_{n-1} + a_n\delta_n$$

with $a_{n-3}=a_{n-1}\neq 0$ and $a_n\neq 0$, $a_n\neq 1$. By 3.7ii we may switch j and k and assume j=n-1, k=n. Then, by 3.8, $W=W'\equiv \prod_{i=1}^s T_{j'(i),\alpha'(i)}$ with $v'_{q-1}=(v_q)T_{n-1,\gamma}$ and $v'_q=(v'_{q-1})T_{n,\delta}$. Now $c(v'_{q-1})\geq c(v'_q)$, by 3.2, and we are done by induction on q.

This concludes the proof of Proposition 3.1.

4. Proof of Theorem 1

We fix an even number $n \geq 4$ and assume that ϕ_{n+1} restricted to $\mathbf{H}_{1,n-1}$ is a monomorphism.

4.1 LEMMA: Let $\sigma_n(T_1) = \Gamma_{n-1}, \sigma_n(T_2) = T_n$. Let $\tau_n(T_1) = \Gamma_{n-3}, \tau_n(T_2) = T_{n-2}, \tau_n(T_3) = T_{n-1}, \tau_n(T_4) = T_n$. Then σ_n extends to a homomorphism σ_n : $G_3 \to G_{n+1}$, and τ_n extends to a homomorphism $\tau_n : G_5 \to G_{n+1}$. Also Γ_{n-1} commutes with T_k for $k = 1, 2, \ldots, n-1$, and

$$(\Gamma_{n-1})^2 = (\Gamma_{n-3}T_{n-2}T_{n-1})^4 \in \mathbf{H}_{1,n-1}.$$

Proof: By 1.3 and 2.1 we have the following fact, which will be used repeatedly:

(P) Let $T_j, T_k, W, W_1 \in \mathbf{H}_{1,n-1}$ (respectively $T_j, T_k, W, W_1 \in \mathbf{H}_{2,n}$). Suppose that $v = (a\delta_j)W = (b\delta_k)W_1$. Then $(T_{j,a^2})^*W = (T_{k,b^2})^*W_1$ (since

$$\theta_v = \phi_{n+1}((T_{j,a^2})^*W) = \phi_{n+1}((T_{k,b^2})^*W_1)).$$

We first prove the lemma for n=4. Let

$$U = T_4 T_{3,-1} T_{4,-1/2} T_{3,2} T_{2,-1} T_{3,-2} T_{2,-1} T_{4,-1/2} T_{3,-1} T_4.$$

Then $(\delta_1)U = e_3, (\delta_2)U = \delta_4, (\delta_3)U = -\delta_3, (\delta_4)U = \delta_2$. By (P) we have $(T_2)^*U = T_4, (T_3)^*U = T_3, (T_4)^*U = T_2$. Also

$$(T_1)^*U = (T_1)^*T_{2,-1}T_{3,-2}T_{2,-1}T_{4,-1/2}T_{3,-1}T_4.$$

We shall prove that $(T_1)^*U = \Gamma_3$.

By (P),
$$(T_1)^*T_2T_{3,-1}T_{2,-1/2} = (T_1)^*T_{2,2}T_{3,-1/2}T_{2,-1}$$
 hence

$$\Gamma_3 = (T_1)^* T_{2,2} T_{3,-1/2} T_{2,-1} T_4 T_{3,2} T_4.$$

Now, by conjugation, the equality $\Gamma_3 = (T_1)^*U$ is equivalent to

$$(T_1)^*T_{2,2}T_{3,-1/2}T_4 = (T_1)^*T_{2,-1}T_{3,-2}T_{2,-1}T_{4,-1/2}T_{3,-3}T_2.$$

We have

$$(T_1)^*T_{2,-1}T_{3,-2}T_{2,-1}T_{4,-1/2}T_{3,-3}T_2 =$$

(by R2)

$$(T_1)^*T_{2,-1}T_{3,-2}T_{4,-1/2}T_{2,-1}T_{3,-3}T_2 =$$

(by R1)

$$(T_1)^*T_{2,-1}T_{3,-2}T_{4,-1/2}T_3T_{2,-3}T_{3,-1} =$$

(by R1 and R2)

$$(T_2)^*T_{3,-2}T_{4,-1/2}T_3T_1T_{2,-3}T_{3,-1} =$$

(by (P))

$$(T_2)^*T_{3,-2}T_{4,-1/2}T_1T_{2,-3}T_{3,-1} =$$

(by R2)

$$(T_2)^*T_{3,-2}T_1T_{2,-3}T_{4,-1/2}T_{3,-1} =$$

(by(P)

$$(T_1)^*T_{2,2}T_3T_{4,-1/2}T_{3,-1} =$$

(by R1 and R2)

$$(T_1)^*T_{2,2}T_{3,-1/2}T_4$$

as required.

So σ_4 is a homomorphism and τ_4 is an identity.

Since T_1 commutes with T_3 and T_4 , Γ_3 commutes with T_2 and T_3 . Also $(\Gamma_3)^*T_1 = \Gamma_3$ by R1 and (P) so Γ_3 commutes with T_1 .

$$(\Gamma_3)^2 = (T_1 T_2 T_3)^4$$
 by R6.

Let now $n \geq 6$ and assume σ_{n-2} and τ_{n-2} are homomorphisms. Let

$$U_0 =$$

$$T_{n-2}T_{n-3,-1}T_{n-2,-1/2}T_{n-3,2}T_{n-4,-1}T_{n-3,-2}T_{n-4,-1}T_{n-2,-1/2}T_{n-3,-1}T_{n-2},$$

$$U_1 = (T_{n-1})^* T_{n-2} T_{n-3,-1} T_{n-2,-1/2} T_{n-4} T_{n-3,2} T_{n-4}.$$

Let
$$W_2 = T_{n-1}T_{n-2}T_{n-3,-1}T_{n-2,-1/2}T_{n-4}T_{n-3,2}$$
 and $U_2 = (T_n)^*W_2$. Let

$$W_3 = T_{n-1}T_{n-2}T_{n-3}T_{n-4,-1}T_{n-3,-1/2}T_{n-2,-1}T_{n-1,-1}$$
 and $U_3 = (T_n)^*W_3$.

Let $U = U_0 U_1 U_2 U_3$.

We claim that

$$(\Gamma_{n-5})^*U = \Gamma_{n-3}, (T_{n-4})^*U = T_{n-2}, (T_{n-3})^*U = T_{n-1}, (T_{n-2})^*U = T_n.$$

By direct computation one can check that

$$(\delta_{n-4})U = \delta_{n-2}, (\delta_{n-3})U = \delta_{n-1}, (\delta_{n-2})U = \delta_n,$$

so the last three claims follow from (P).

Also $(e_{n-5})U_0U_1 = e_{n-3}$ and, since $U_0U_1 \in \mathbf{H}_{1,n-1}$, we have, by (P), $(\Gamma_{n-5})U_0U_1 = \Gamma_{n-3}$. Furthermore $W_2, W_3 \in \mathbf{H}_{1,n-1}$ and

$$(e_{n-3})W_2^{-1} = e_{n-5} + (1/2)\delta_{n-3} = (e_{n-5})T_{n-4}T_{n-3,1/2}T_{n-4,-2}$$

so by (P), $(\Gamma_{n-3})^*W_2^{-1} = (\Gamma_{n-5})^*T_{n-4}T_{n-3,1/2}T_{n-4,-2}$ and $(\Gamma_{n-3})^*U_2 = \Gamma_{n-3}$ by R2.

$$(e_{n-3})W_3^{-1} = e_{n-5} - (1/2)\delta_{n-4} + \delta_{n-3} = (e_{n-5})T_{n-4,1/2}T_{n-3,2}$$

so by (P) $(\Gamma_{n-3})^*W_3^{-1} = (\Gamma_{n-5})^*T_{n-4,1/2}T_{n-3,2}$ and $(\Gamma_{n-3})^*U_3 = \Gamma_{n-3}$ by R2. Thus $(\Gamma_{n-5})^*U = \Gamma_{n-3}$ as required.

Now composition of τ_{n-2} with conjugation by U extends τ_n .

$$\Gamma_{n-3} = (\Gamma_{n-5})^* T_{n-4} T_{n-3,1/2} T_{n-4,-2} T_{n-2} T_{n-3,2} T_{n-2}.$$

Therefore

$$(\Gamma_{n-3})^*U = (\Gamma_{n-3})^*T_{n-2}T_{n-1,1/2}T_{n-2,-2}T_nT_{n-1,2}T_n = \Gamma_{n-1},$$

and composition of σ_{n-2} with conjugation by U extends σ_n .

Since $(\Gamma_{n-3})^2 = (\Gamma_{n-5}T_{n-4}T_{n-3})^4$, by induction hypothesis, we have

$$(\Gamma_{n-1})^2 = (\Gamma_{n-3}T_{n-2}T_{n-1})^4$$

by conjugation by U. Since Γ_{n-3} commutes with T_{n-4} and T_{n-3} , Γ_{n-1} commutes with T_{n-2} and T_{n-1} .

For k < n-2

$$(\Gamma_{n-1})^* T_k = (\text{by R2}) \quad (\Gamma_{n-3})^* T_{n-2} T_{n-1,1/2} T_{n-2,-2} T_k T_n T_{n-1,2} T_n$$
$$= (\text{by (P)}) \quad (\Gamma_{n-3})^* T_{n-2} T_{n-1,1/2} T_{n-2,-2} T_n T_{n-1,2} T_n = \Gamma_{n-1}.$$

This concludes the proof of Lemma 4.1.

4.2 COROLLARY: There exists a split epimorphism $\rho_{n+2}: \mathbf{G}_{n+2} \to \mathbf{G}_{n+1}$ such that $\rho_{n+2}(T_{n+1}) = \Gamma_{n-1}$ and $\rho_{n+2}(T_k) = T_k$ for k < n+1.

Proof: By Lemma 4.1, ρ_{n+2} preserves relations R1-R6.

We have to prove that ϕ_{n+1} is an isomorphism. It follows from 3.6 that for every vector $0 \neq v \in V_n$ there exists $W \in \mathbf{G}_{n+1}$ such that $(\delta_n)W = v$. Then $\theta_v = \phi_{n+1}((T_n)^*W)$. It is known that transvections θ_v generate $\mathrm{Sp}(n,p)$, so ϕ_{n+1} is onto. We shall prove that ϕ_{n+1} is a monomorphism.

Suppose $A \in \ker \phi_{n+1}$. G_{n+1} is generated by T_1, T_2, \ldots, T_n . Γ_{n-1} is a conjugate of T_1 by an element of $\mathbf{H}_{2,n}$ so \mathbf{G}_{n+1} is also generated by $T_2, \ldots, T_n, \Gamma_{n-1}$. We can write A as a word in letters $T_2, \ldots, T_n, \Gamma_{n-1} : A = W(T_2, \ldots, T_n, \Gamma_{n-1})$. Let $A_1 = W(T_2, \ldots, T_n, T_{n+1}) \in \mathbf{G}_{n+2}$. Let $\rho_{n+2} : \mathbf{G}_{n+2} \to \mathbf{G}_{n+1}$ be the epimorphism defined in 4.2. Then $\rho_{n+2}(T_{n+1}) = \Gamma_{n-1}, \rho_{n+2}(A_1) = A$.

4.3 LEMMA: A = 1.

Proof: Consider the commutative diagram of section 2 with n replaced by n+2.

We have $\phi_{n+1}\rho_{n+2} = \rho'\phi_{n+2}$. Thus $\phi_{n+2}(A_1) \in \ker \rho'$. Therefore $(\delta_{n+1})A_1 = \delta_{n+1} + ae_{n+1}$ and, since $A_1 \in \mathbf{H}_{2,n+1}$, the coefficient of δ_1 in $(\delta_{n+1})A_1$ equals zero. So $(\delta_{n+1})A_1 = \delta_{n+1}$. Let $D = T_1T_2\cdots T_{n+1} \in \mathbf{G}_{n+2}$. $(\delta_{n+1})D = T_1T_2\cdots T_{n+1}$

 $\delta_n, D^{-1}\mathbf{H}_{2,n+1}D = \mathbf{H}_{1,n}$. In particular $A_2 = (A_1)^*D \in \mathbf{H}_{1,n}$, and $(\delta_n)A_2 = \delta_n$. By Proposition 3.1, $A_2 \in \mathbf{H}$, hence $A_1 \in D\mathbf{H}D^{-1}$, which is generated by $T_2, T_3, \ldots, T_{n-1}$, DSD^{-1}, T_{n+1} , where

$$S = (T_n)^* T_{n-1,-1} T_{n-2,-2} T_{n-1,-1}, \quad DSD^{-1} = (T_{n+1})^* T_{n,-1} T_{n-1,-2} T_{n,-1}.$$

Now $\rho_{n+2}(T_{n+1}) = \Gamma_{n-1} \in \mathbf{H}_{1,n-1}$, and

$$\begin{split} \rho_{n+2}(DSD^{-1}) &= (\Gamma_{n-1})^*T_{n,-1}T_{n-1,-2}T_{n,-1} \\ &= (\Gamma_{n-3})^*T_{n-2}T_{n-1,-1}T_{n-2,-1/2} \in \mathcal{H}_{1,n-1}. \end{split}$$

Therefore $\rho_{n+2}(A_1) = A \in \mathbf{H}_{1,n-1}$. But ϕ_{n+1} restricted to $\mathbf{H}_{1,n-1}$ is a monomorphism, hence A = 1.

This concludes the proof of Theorem 1.

ACKNOWLEDGEMENT: In the present version of the paper the main idea of the proof of Theorem 1 as well as most of the ideas in sections 2 and 4 are taken from the unpublished paper of B. Moishezon [M], in which a new proof of the result of Assion was given (the case p=3). The author is greatly indebted to Professor Moishezon for his contribution to this paper.

References

- [A] J. Assion, Einige endliche Faktorgruppen der Zopfgruppen, Math. Z. 163 (1978), 291-302.
- [B] J. Birman, Braids, Links and Mapping Class Groups, Ann. Math. Studies 82 (1974).
- [C] H. S. M. Coxeter, Factor groups of the braid group, Proc. 4th Can. Math. Congress, Toronto Univ. Press, 1959, pp. 95-122.
- [M] B. Moishezon, Finite quotients of braid groups related to symplectic groups over Z/3, preprint.
- [S] J. G. Sunday, Presentations of the groups SL(2,m) and PSL(2,m), Can. J. Math.
 24 (1972), 1129-1131.
- [W] B. Wajnryb, Symplectic groups over a field with three elements, preprint.